游客
题文

5名工人独立地工作,假定每名工人在1小时内平均12分钟需要电力(即任一时刻需要电力的概率为12/60)
(1)设X为某一时刻需要电力的工人数,求 X的分布列及期望;
(2)如果同一时刻最多能提供3名工人需要的电力,求电力超负荷的概率,并解释实际意义.

科目 数学   题型 解答题   难度 较易
知识点: 正交试验设计方法
登录免费查看答案和解析
相关试题

(本小题满分10分)选修4—4:坐标系与参数方程
在直角坐标系中,圆的参数方程为参数).以为极点,轴的非负半轴为极轴建立极坐标系.
(Ⅰ)求圆的极坐标方程;
(Ⅱ)直线的极坐标方程是,射线与圆的交点为,与直线的交点为,求线段的长.

(本小题满分7分)选修4—2:矩阵与变换
已知矩阵
(Ⅰ)求A的逆矩阵A-1
(Ⅱ)求A的特征值及对应的特征向量。

【改编】已知函数是常数)在处的切线方程为,且
(Ⅰ)求常数的值;
(Ⅱ)若函数)在区间内不是单调函数,求实数的取值范围;
(Ⅲ)证明:

已知椭圆的方程为,双曲线的左、右焦点分别为的左、右顶点,而的左、右顶点分别是的左、右焦点。
(1)求双曲线的方程;
(2)若直线与椭圆及双曲线都恒有两个不同的交点,且L与的两个焦点A和B满足(其中O为原点),求的取值范围。

如图,三棱柱中,,平面平面相交于点

(Ⅰ)求证:平面
(Ⅱ)求二面角的余弦值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号