5名工人独立地工作,假定每名工人在1小时内平均12分钟需要电力(即任一时刻需要电力的概率为12/60)
(1)设X为某一时刻需要电力的工人数,求 X的分布列及期望;
(2)如果同一时刻最多能提供3名工人需要的电力,求电力超负荷的概率,并解释实际意义.
(本小题12分)
过椭圆的一个焦点
且垂直于
轴的直线交椭圆于点
。
(Ⅰ)求椭圆C的方程;
(Ⅱ)是否存在过点的直线
与椭圆
交于两点
、
,使得
(其中
为弦
的中点)?若存在,求出直线
的方程;若不存在,请说明理由
(本小题12分)
图甲是一个几何体的表面展开图,图乙是棱长为的正方体。
(Ⅰ)若沿图甲中的虚线将四个三角形折叠起来,使点、
、
、
重合,则可以围成怎样的几何体?请求出此几何体的体积;
(Ⅱ)需要多少个(I)的几何体才能拼成一个图乙中的正方体?请按图乙中所标字母写出这几个几何体的名称;
(Ⅲ)在图乙中,点为棱
上的动点,试判断
与平面
是否垂直,并说明理由。
(本小题12分)
在某次高三质检考试后,抽取了九位同学的数学成绩进行统计,下表是九位同学的选择题和填空题的得分情况:
选择题 |
40 |
55 |
50 |
45 |
50 |
40 |
45 |
60 |
40 |
填空题 |
12 |
16 |
![]() ![]() |
12 |
16 |
12 |
8 |
12 |
8 |
(Ⅰ)若这九位同学填空题得分的平均分为,试求表中
的值及他们填空题得分的标准差;
(Ⅱ)在(Ⅰ)的条件下,记这九位同学的选择题得分组成的集合为,填空题得分组成的集合为
.若同学甲的解答题的得分是
,现分别从集合
、
中各任取一个值当作其选择题和填空题的得分,求甲的数学成绩高于
分的概率
(本小题12分)
已知数列满足
,
,等比数列
的首项为2,公比为
。
(Ⅰ)若,问
等于数列
中的第几项?
(Ⅱ)数列和
的前
项和分别记为
和
,
的最大值为
,当
时,试比较
与
的大小
(本小题12分)
已知中,角
、
、
的对边分别为
、
、
,
角不是最大角,
,外接圆的圆心为
,半径为
。
(Ⅰ)求的值;
(Ⅱ)若,求
的周长。