5名工人独立地工作,假定每名工人在1小时内平均12分钟需要电力(即任一时刻需要电力的概率为12/60)
(1)设X为某一时刻需要电力的工人数,求 X的分布列及期望;
(2)如果同一时刻最多能提供3名工人需要的电力,求电力超负荷的概率,并解释实际意义.
(本小题满分10分)选修4—4:坐标系与参数方程
在直角坐标系中,圆
的参数方程
为参数).以
为极点,
轴的非负半轴为极轴建立极坐标系.
(Ⅰ)求圆的极坐标方程;
(Ⅱ)直线的极坐标方程是
,射线
与圆
的交点为
,与直线
的交点为
,求线段
的长.
(本小题满分7分)选修4—2:矩阵与变换
已知矩阵
(Ⅰ)求A的逆矩阵A-1;
(Ⅱ)求A的特征值及对应的特征向量。
【改编】已知函数(
是常数)在
处的切线方程为
,且
.
(Ⅰ)求常数的值;
(Ⅱ)若函数(
)在区间
内不是单调函数,求实数
的取值范围;
(Ⅲ)证明:.
已知椭圆的方程为
,双曲线
的左、右焦点分别为
的左、右顶点,而
的左、右顶点分别是
的左、右焦点。
(1)求双曲线的方程;
(2)若直线与椭圆
及双曲线
都恒有两个不同的交点,且L与的两个焦点A和B满足
(其中O为原点),求
的取值范围。
如图,三棱柱中,
,
,平面
平面
,
与
相交于点
.
(Ⅰ)求证:平面
;
(Ⅱ)求二面角的余弦值.