游客
题文

(本小题满分12分)
为备战2012奥运会,甲、乙两位射击选手进行了强化训练. 现分别从他们的强化训练期间的若干次平均成绩中随机抽取8次,记录如下:
甲:8.3,9.0,7.9,7.8,9.4,8.9,8.4,8.3;
乙:9.2,9.5,8.0,7.5,8.2,8.1,9.0,8.5.
(1)画出甲、乙两位选手成绩的茎叶图;(用茎表示成绩的整数部分,用叶表示成绩的小数部分)
(2)现要从中选派一人参加奥运会,从平均成绩和发挥稳定性角度考虑,你认为派哪位选手参加合理? 简单说明理由.
(3)若将频率视为概率,对选手乙在今后的三次比赛成绩进行预测,记这三次成绩中不低于8.5分的次数为,求的分布列及均值E.

科目 数学   题型 解答题   难度 容易
知识点: 误差估计
登录免费查看答案和解析
相关试题

已知椭圆)的右焦点,右顶点,右准线

(1)求椭圆的标准方程;
(2)动直线与椭圆有且只有一个交点,且与右准线相交于点,试探究在平面直角坐标系内是否存在点,使得以为直径的圆恒过定点?若存在,求出点坐标;若不存在,说明理由.

)已知某音响设备由五个部件组成,A电视机,B影碟机,C线路,D左声道和E右声道,其中每个部件工作的概率如图所示,能听到声音,当且仅当A与B中有一个工作,C工作,D与E中有一个工作;且若D和E同时工作则有立体声效果.

(1)求能听到立体声效果的概率;
(2)求听不到声音的概率.(结果精确到0.01)

设等差数列的前项和为.且
(1)求数列的通项公式;
(2)若,数列满足:,求数列的前项和

如图,在四棱锥中,底面为菱形,的中点.

(1)若,求证:平面平面
(2)点在线段上,,若平面平面,且,求二面角的大小.

已知函数.
(1)求的最小正周期和最小值;
(2)若不等式对任意恒成立,求实数的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号