(本小题满分12分)
为备战2012奥运会,甲、乙两位射击选手进行了强化训练. 现分别从他们的强化训练期间的若干次平均成绩中随机抽取8次,记录如下:
甲:8.3,9.0,7.9,7.8,9.4,8.9,8.4,8.3;
乙:9.2,9.5,8.0,7.5,8.2,8.1,9.0,8.5.
(1)画出甲、乙两位选手成绩的茎叶图;(用茎表示成绩的整数部分,用叶表示成绩的小数部分)
(2)现要从中选派一人参加奥运会,从平均成绩和发挥稳定性角度考虑,你认为派哪位选手参加合理? 简单说明理由.
(3)若将频率视为概率,对选手乙在今后的三次比赛成绩进行预测,记这三次成绩中不低于8.5分的次数为,求
的分布列及均值E
.
如图,在四棱锥中,底面
是矩形,
,
,
,
是棱
的中点.
(1)求证:平面
;
(2)求证:平面
;
(3)在棱上是否存在一点
,使得平面
平面
?若存在,求出
的值;若不存在,说明理由.
某批次的某种灯泡共个,对其寿命进行追踪调查,将结果列成频率分布表如下.根据寿命将灯泡分成优等品、正品和次品三个等级,其中寿命大于或等于
天的灯泡是优等品,寿命小于
天的灯泡是次品,其余的灯泡是正品.
寿命(天) |
频数 |
频率 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
合计 |
![]() |
![]() |
(1)根据频率分布表中的数据,写出、
、
的值;
(2)某人从这个灯泡中随机地购买了
个,求此灯泡恰好不是次品的概率;
(3)某人从这批灯泡中随机地购买了个,如果这
个灯泡的等级情况恰好与按三个等级分层抽样所得的结果相同,求
的最小值.
在中,角
、
、
所对的边分别为
、
、
.已知
.
(1)求的大小;
(2)如果,
,求
的值.
在数列中,
.从数列
中选出
项并按原顺序组成的新数列记为
,并称
为数列
的
项子列.例如数列
、
、
、
为
的一个
项子列.
(1)试写出数列的一个
项子列,并使其为等差数列;
(2)如果为数列
的一个
项子列,且
为等差数列,证明:
的公差
满足
;
(3)如果为数列
的一个
项子列,且
为等比数列,证明:
.
已知椭圆,直线
与
相交于
、
两点,
与
轴、
轴分别相交于
、
两点,
为坐标原点.
(1)若直线的方程为
,求
外接圆的方程;
(2)判断是否存在直线,使得
、
是线段
的两个三等分点,若存在,求出直线
的方程;若不存在,说明理由.