已知椭圆:
(
)的右焦点
,右顶点
,右准线
且
.
(1)求椭圆的标准方程;
(2)动直线:
与椭圆
有且只有一个交点
,且与右准线相交于点
,试探究在平面直角坐标系内是否存在点
,使得以
为直径的圆恒过定点
?若存在,求出点
坐标;若不存在,说明理由.
如图, 在直三棱柱中,
,
,点
是
的中点,
(1)求证:;
(2)求证:;
(3)求直线与平面
所成角的正切值.
已知关于的方程
.
(1)若方程表示圆,求实数
的取值范围 ;
(2)若圆与直线
相交于
两点,且
,求
的值
已知向量
(1)求和
;
(2)为何值时,向量
与
垂直;
(3)为何值时,向量
与
平行。
已知=(2asin2x,a),
=(-1,2
sinxcosx+1),O为坐标原点,a≠0,设f(x)=
·
+b,b>a。
(1)若a>0,写出函数y=f(x)的单调递增区间;
(2)若函数y=f(x)的定义域为[,π],值域为[2,5],求实数a与b的值。
已知函数。
(1)若,求函数
的值;
(2)求函数的值域。