游客
题文

阅读材料:
(1)对于任意两个数的大小比较,有下面的方法:
时,一定有
时,一定有
时,一定有
反过来也成立.因此,我们把这种比较两个数大小的方法叫做“求差法”.
(2)对于比较两个正数的大小时,我们还可以用它们的平方进行比较:

∴()与()的符号相同
>0时,>0,得
=0时,=0,得
<0时,<0,得
解决下列实际问题:
(1)课堂上,老师让同学们制作几种几何体,张丽同学用了3张A4纸,7张B5纸;李明同学用了2张A4纸,8张B5纸.设每张A4纸的面积为x,每张B5纸的面积为y,且x>y,张丽同学的用纸总面积为W1,李明同学的用纸总面积为W2.回答下列问题:
①W1=             (用x、y的式子表示)
W2=             (用x、y的式子表示)
②请你分析谁用的纸面积最大.
(2)如图1所示,要在燃气管道l上修建一个泵站,分别向A.B两镇供气,已知A.B到l的距离分别是3km、4km(即AC=3km,BE=4km),AB=xkm,现设计两种方案:

方案一:如图2所示,AP⊥l于点P,泵站修建在点P处,该方案中管道长度a1=AB+AP.
方案二:如图3所示,点A′与点A关于l对称,A′B与l相交于点P,泵站修建在点P处,该方案中管道长度a2=AP+BP.
①在方案一中,a1=             km(用含x的式子表示);
②在方案二中,a2=   km(用含x的式子表示);
③请你分析要使铺设的输气管道较短,应选择方案一还是方案二.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

如图,已知∠BAC=∠BCA,∠BAE=∠BCD=90°,BE=BD.求证:∠E=∠D.

解不等式,并把它的解集在数轴上表示出来.

如图1,若抛物线L1的顶点A在抛物线L2上,抛物线L2的顶点B也在抛物线L1上(点A与点B不重合),我们把这样的两抛物线L1、L2互称为“友好”抛物线.

(1)一条抛物线的“友好”抛物线有_______条.

A.1 B.2 C.3 D.无数

(2)如图2,已知抛物线L3与y轴交于点C,点C关于该抛物线对称轴的对称点为D,请求出以点D为顶点的L3的“友好”抛物线L4的表达式;
(3)若抛物线的“友好”抛物线的解析式为,请直接写出的关系式为

在△ABC中,AB=BC=2,∠ABC=90°,BD为斜边AC上的中线,将△ABD绕点D顺时针旋转α(0°<α<180°)得到△EFD,其中点A的对应点为点E,点B的对应点为点F.BE与FC相交于点H.
(1)如图1,直接写出BE与FC的数量关系:____________;
(2)如图2,M、N分别为EF、BC的中点.求证:MN=
(3)连接BF,CE,如图3,直接写出在此旋转过程中,线段BF、CE与AC之间的数量关系:

已知关于x的一元二次方程(k≠0).

(1)求证:无论k取何值,方程总有两个实数根;
(2)点在抛物线上,其中,且和k均为整数,求A,B两点的坐标及k的值;
(3)设(2)中所求抛物线与y轴交于点C,问该抛物线上是否存在点E,使得,若存在,求出E点坐标,若不存在,说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号