先化简,再求值.
(1)其中
.
(2)已知x+3y="3" ,xy=11,求代数式3(x-3y)-(xy+5)+2(3y-2x)的值.
某蔬菜加工公司先后两批次收购蒜薹 tái 共100吨.第一批蒜薹价格为4000元 吨;因蒜薹大量上市,第二批价格跌至1000元 吨.这两批蒜薹共用去16万元.
(1)求两批次购进蒜薹各多少吨?
(2)公司收购后对蒜薹进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润1000元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?
如图,某数学兴趣小组要测量一栋五层居民楼 的高度.该楼底层为车库,高2.5米;上面五层居住,每层高度相等.测角仪支架离地1.5米,在 处测得五楼顶部点 的仰角为 ,在 处测得四楼顶部点 的仰角为 , 米.求居民楼的高度(精确到0.1米,参考数据:
某校为了解九年级男同学的体育考试准备情况,随机抽取部分男同学进行了1000米跑步测试.按照成绩分为优秀、良好、合格与不合格四个等级,学校绘制了如下不完整的统计图.
(1)根据给出的信息,补全两幅统计图;
(2)该校九年级有600名男生,请估计成绩未达到良好有多少名?
(3)某班甲、乙两位成绩优秀的同学被选中参加即将举行的学校运动会1000米比赛.预赛分别为 、 、 三组进行,选手由抽签确定分组.甲、乙两人恰好分在同一组的概率是多少?
如图,已知抛物线 过点 , , ,点 、 为抛物线上的动点,过点 作 轴,交直线 于点 ,交 轴于点 .
(1)求二次函数 的表达式;
(2)过点 作 轴,垂足为点 ,若四边形 为正方形(此处限定点 在对称轴的右侧),求该正方形的面积;
(3)若 , ,求点 的横坐标.
如图,四边形 为一个矩形纸片, , ,动点 自 点出发沿 方向运动至 点后停止, 以直线 为轴翻折,点 落在点 的位置.设 ,△ 与原纸片重叠部分的面积为 .
(1)当 为何值时,直线 过点 ?
(2)当 为何值时,直线 过 的中点 ?
(3)求出 与 的函数表达式.