四边形ABCD中,点E是AB的中点,F是AD边上的动点.连结DE、CF.
(1)若四边形ABCD是矩形,AD=12,CD=10,如图(1)所示.
①请直接写出AE的长度;
②当DE⊥CF时,试求出CF长度.
(2)如图(2),若四边形ABCD是平行四边形,DE与CF相交于点P.
探究:当∠B与∠PC满足什么关系时,成立?并证明你的结论.
(本小题6分) 如图,OA、OC是⊙O的半径,OA=1,且OC⊥OA,点D在弧AC上,弧AD=2弧CD,在OC求一点P,使PA+PD最小,并求这个最小值.
(本小题6分) 如图,在梯形中,
,
,
,
,
,求
的长.
(本小题7分)已知AB为⊙O的直径,AC为弦,OD∥BC,交AC于D,BC=4cm.(1)求证:AC⊥OD;
(2)求OD的长;
(3)若2sinA-1=0,求⊙O的直径.
(本小题6分)二次函数的图象经过点(1,2)和(0,-1)且对称轴为x=2,求二次函数解析式.
(14分)已知抛物线y=ax2+bx+c(a≠0)经过A(-2,0)、B(0,1)两点,且对称轴是y轴.经过点C(0,2)的直线l与x轴平行,O为坐标原点,P、Q为抛物线y=ax2+bx+c(a≠0)上的两动点.(1) 求抛物线的解析式;
(2) 以点P为圆心,PO为半径的圆记为⊙P,判断直线l与⊙P的位置关系,并证明你的结论;
(3) 设线段PQ=9,G是PQ的中点,求点G到直线l距离的最小值.