游客
题文

如图,在Rt△ABC中,∠B=90°,∠A的平分线交BC于D,E为AB上一点,DE=DC,以D为圆心,以DB的长为半径画圆。求证:(1)AC是⊙D的切线;(2)AB+EB=AC。

科目 数学   题型 解答题   难度 中等
知识点: 圆幂定理
登录免费查看答案和解析
相关试题

为迎接建党100周年,某校组织学生开展了党史知识竞赛活动.竞赛项目有: A .回顾重要事件; B .列举革命先烈; C .讲述英雄故事; D .歌颂时代精神.学校要求学生全员参加且每人只能参加一项,为了解学生参加竞赛情况,随机调查了部分学生,并将调查结果绘制成如下两幅不完整的统计图,请你根据图中信息解答下列问题:

(1)本次被调查的学生共有   名;

(2)在扇形统计图中" B 项目"所对应的扇形圆心角的度数为   ,并把条形统计图补充完整;

(3)从本次被调查的小华、小光、小艳、小萍这四名学生中,随机抽出2名同学去做宣讲员,请用列表或画树状图的方法求出恰好小华和小艳被抽中的概率.

先化简,再求值: 6 a a 2 - 9 ÷ ( 1 + 2 a - 3 a + 3 ) ,其中 a = 2 sin 30 ° + 3

课本再现

(1)在证明"三角形内角和定理"时,小明只撕下三角形纸片的一个角拼成图1即可证明,其中与 A 相等的角是   

类比迁移

(2)如图2,在四边形 ABCD 中, ABC ADC 互余,小明发现四边形 ABCD 中这对互余的角可类比(1)中思路进行拼合:先作 CDF = ABC ,再过点 C CE DF 于点 E ,连接 AE ,发现 AD DE AE 之间的数量关系是   

方法运用

(3)如图3,在四边形 ABCD 中,连接 AC BAC = 90 ° ,点 O ΔACD 两边垂直平分线的交点,连接 OA OAC = ABC

①求证: ABC + ADC = 90 °

②连接 BD ,如图4,已知 AD = m DC = n AB AC = 2 ,求 BD 的长(用含 m n 的式子表示).

二次函数 y = x 2 - 2 mx 的图象交 x 轴于原点 O 及点 A

感知特例

(1)当 m = 1 时,如图1,抛物线 L : y = x 2 - 2 x 上的点 B O C A D 分别关于点 A 中心对称的点为 B ' O ' C ' A ' D ' ,如表:

B ( - 1 , 3 )

O ( 0 , 0 )

C ( 1 , - 1 )

A (      )

D ( 3 , 3 )

B ' ( 5 , - 3 )

O ' ( 4 , 0 )

C ' ( 3 , 1 )

A ' ( 2 , 0 )

D ' ( 1 , - 3 )

①补全表格;

②在图1中描出表中对称后的点,再用平滑的曲线依次连接各点,得到的图象记为 L '

形成概念

我们发现形如(1)中的图象 L ' 上的点和抛物线 L 上的点关于点 A 中心对称,则称 L ' L 的“孔像抛物线”.例如,当 m = - 2 时,图2中的抛物线 L ' 是抛物线 L 的“孔像抛物线”.

探究问题

(2)①当 m = - 1 时,若抛物线 L 与它的“孔像抛物线” L ' 的函数值都随着 x 的增大而减小,则 x 的取值范围为   

②在同一平面直角坐标系中,当 m 取不同值时,通过画图发现存在一条抛物线与二次函数 y = x 2 - 2 mx 的所有“孔像抛物线” L ' 都有唯一交点,这条抛物线的解析式可能是   (填“ y = a x 2 + bx + c ”或“ y = a x 2 + bx ”或“ y = a x 2 + c ”或“ y = a x 2 ”,其中 abc 0 )

③若二次函数 y = x 2 - 2 mx 及它的“孔像抛物线”与直线 y = m 有且只有三个交点,求 m 的值.

如图1,四边形 ABCD 内接于 O AD 为直径,点 C CE AB 于点 E ,连接 AC

(1)求证: CAD = ECB

(2)若 CE O 的切线, CAD = 30 ° ,连接 OC ,如图2.

①请判断四边形 ABCO 的形状,并说明理由;

②当 AB = 2 时,求 AD AC CD ̂ 围成阴影部分的面积.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号