锐角△ABC中,BC=6,,两动点M,N分别在边AB,AC上滑动,且MN∥BC,以MN为边向下作正方形MPQN,设其边长为x,正方形MPQN与△ABC公共部分的面积为y(y>0).
(1) 求△ABC中边BC上高AD;
(2) 当为何值时,PQ恰好落在边BC上(如图1);
(3) 当PQ在外部时(如图2),求y关于x的函数关系式(注明x的取值范围),并求出x为何值时y最大,最大值是多少?
计算:(x-3)2-(1-x)•(3-x)-2.
如图,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合),将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.
(1)求证:∠APB=∠BPH;
(2)当点P在边AD上移动时,求证:△PDH的周长是定值;
(3)当BE+CF的长取最小值时,求AP的长.
如图,抛物线y=-x2-x+6与x轴交于A、B两点,与y轴交于点C.
(1)求点A、B的坐标;
(2)设点P是线段AC上一点,且S△ABP:S△BCP=1:3,求点P的坐标;
(3)若直线y=x+a与抛物线交于M、N两点,当∠MON为锐角时,求a的取值范围.
如图,△ABC是直角三角形,∠ACB=90°.
(1)动手操作:利用尺规作∠ABC的平分线,交AC于点O,再以O为圆心,OC的长为半径作⊙O(保留作图痕迹,不写作法);
(2)综合运用:在你所作的图中,
①判断AB与⊙O的位置关系,并证明你的结论;
②若AC=12,tanOBC=,求⊙O的半径.
如图,A(4,0),B(1,3),以OA、OB为边作平行四边形OACB,反比例函数y=的图象经过点C.
(1)求k的值;
(2)根据图象,直接写出y<3时自变量x的取值范围;
(3)将平行四边形OACB向上平移几个单位长度,使点B落在反比例函数的图象上.