如图1,在梯形ABCD中,AB∥CD,∠B=90°,AB=2,CD=1,BC=m,P为线段BC上的一动点,且和B、C不重合,连接PA,过P作PE⊥PA交CD所在直线于E.设BP=x,CE=y.
(1)求y与x的函数关系式;
(2)若点P在线段BC上运动时,点E总在线段CD上,求m的取值范围;
(3)如图2,若m=4,将△PEC沿PE翻折至△PEG位置,∠BAG=90°,求BP长.
已知抛物线.
(1)求证:该抛物线与轴一定有两个交点;
(2)若该抛物线与轴的两个交点分别为A、B,且它的顶点为P,求△ABP的面积。
如图,A(-1,0),B(2,-3)两点都在一次函数与二次函数
的图象上.
(1)求和
,
的值;
(2)请直接写出当>
时,自变量
的取值范围.
二次函数图象过A、C、B三点,点A的坐标为(-1,0),点B的坐标为(4,0),点C在轴正半轴上,且AB=OC.
(1)求C的坐标;
(2)求二次函数的解析式,并求出函数最大值.
已知抛物线与
轴交点的横坐标分别为-1和2,且经过点(3,8),求这个抛物线的解析式.
如图,已知抛物线y=ax2+bx+4与x轴交于A(-2,0)、B两点,与y轴交于C点,其对称轴为直线x=1.
(1)直接写出抛物线的解析式:
(2)把线段AC沿x轴向右平移,设平移后A、C的对应点分别为A′、C′,当C′落在抛物线上时,求A′、C′的坐标;
(3)除(2)中的点A′、C′外,在x轴和抛物线上是否还分别存在点E、F,使得以A、C、E、F为顶点的四边形为平行四边形,若存在,求出E、F的坐标;若不存在,请说明理由.