游客
题文

已知在矩形中,的平分线边所在的直线交于点,点是线段上一定点(其中

(1)如图1,若点边上(不与重合),将绕点逆时针旋转后,角的两边分别交射线于点

①求证:      ②探究:之间有怎样的数量关系,并证明你的结论.

(2)拓展:如图2,若点的延长线上(不与重合),过点,交射线于点,你认为(1)中之间的数量关系是否仍然成立?若成立,给出证明;若不成立,请写出它们所满足的数量关系式,并说明理由.

科目 数学   题型 解答题   难度 较难
知识点: 矩形的性质 矩形的判定 等腰三角形的性质
登录免费查看答案和解析
相关试题

冷饮店每天需配制甲、乙两种饮料共50瓶,已知甲饮料每瓶需糖14克,柠檬酸5克;乙饮料每瓶需糖6克,柠檬酸10克.现有糖500克,柠檬酸400克.
(1)请计算有几种配制方案能满足冷饮店的要求?
(2)冷饮店对两种饮料上月的销售情况作了统计,结果如下表.请你根据这些统计数据确定一种比较合理的配制方案,并说明理由.

两种饮料的日销量


10
40
12
38
14
36
16
34
21
29
25
25
30
20
38
12
40
10
50
0
天数
3
4
4
4
8
1
1
1
2
2

如图正方形的面积为4,点为坐标原点,点在函数)的图象上,点是函数的图象上异于的任意一点,过点分别作轴,轴的垂线,垂足分别为
(1)设矩形的面积为,判断与点的位置是否有关(不必说理由).
(2)从矩形的面积中减去其与正方形重合的面积,剩余面积记为,写出的函数关系,并标明的取值范围.

如图,已知为坐标原点,点的坐标为的半径为1,过作直线平行于轴,点上运动.
(1)当点运动到圆上时,求线段的长.
(2)当点的坐标为时,试判断直线的位置关系,并说明理由.

学校要从甲、乙、丙三名中长跑运动员中选出一名奥运火炬传递手.先对三人一学期的1000米测试成绩作了统计分析如表一;又对三人进行了奥运知识和综合素质测试,测试成绩(百分制)如表二;之后在100人中对三人进行了民主推选,要求每人只推选1人,不准弃权,最后统计三人的得票率如图三,一票计2分.
(1)请计算甲、乙、丙三人各自关于奥运知识,综合素质,民主推选三项考查得分的平均成绩,并参考1000米测试成绩的稳定性确定谁最合适.
(2)如果对奥运知识、综合素质、民主推选分别赋予3,4,3的权,请计算每人三项考查的平均成绩,并参考1000米测试的平均成绩确定谁最合适.

阅读材料,解答问题
材料:利用解二元一次方程组的代入消元法可解形如的方程组.
如:由(2)得,代入(1)消元得到关于的方程:

代入得:方程组的解为
请你用代入消元法解方程组:

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号