(本小题满分14分)
动圆G与圆外切,同时与圆
内切,设动圆圆心G的轨迹为
。
(1)求曲线的方程;
(2)直线与曲线
相交于不同的两点
,以
为直径作圆
,若圆C与
轴相交于两点
,求
面积的最大值;
(3)已知,直线
与曲线
相交于
两点(
均不与
重合),且以
为直径的圆过点
,求证:直线
过定点,并求出该点坐标。
已知函数在
上的最大值为
求数列的通项公式;
求证:对任何正整数,都有
;
设数列的前
项和
,求证:对任何正整数
,都有
成立
已知椭圆,过点
且离心率为
.
(1)求椭圆的方程;
(2)已知是椭圆
的左右顶点,动点M满足
,连接AM交椭圆于点P,在x轴上是否存在异于A、B的定点Q,使得直线BP和直线MQ垂直.
如图,底面是边长为2的菱形,且
,以
与
为底面分别作相同的正三棱锥
与
,且
.
(1)求证:平面
;
(2)求平面与平面
所成锐角二面角的余弦值.
甲乙两人进行乒乓球比赛,各局相互独立,约定每局胜者得1分,负者得0分,如果两人比赛五局,乙得1分与得2分的概率恰好相等.
求乙在每局中获胜的概率为多少?
假设比赛进行到有一人比对方多2分或打满6局时停止,用表示比赛停止时已打局数,求
的期望
.
已知函数且
,求函数
的单调区间.