(本小题满分14分)
如图1,在三棱锥P-ABC中,PA⊥平面ABC,AC⊥BC,D为侧棱PC上一点,它的正(主)视图和侧(左)视图如图2所示.
(1) 证明:AD⊥平面PBC;
(2) 在∠ACB的平分线上确定一点Q,使得PQ∥平面ABD,并求此时PQ的长.
(本题满分12分)
中心在原点,长半轴长与短半轴长的和为9
,离心率为0.6,求椭圆的标准方程。
(本题满分12分)
若不等式
对一切
恒成立, 求
的取值范围。
本题满分10分)
一艘轮船按照北偏西50°的方向,以15海里每小时的速度航行,一个灯塔M原来在轮船的北偏东10°方向上,经过40分钟,轮船与灯塔的距离是
海里,则灯塔和轮船原来的距离为多少?
已知圆
过椭圆
的两焦点,与椭圆有且仅有两个
与圆
相切 ,与椭圆
相交于
两点记
(1)求椭圆的方程
(2)求
的取值范围;
(3)求
的面积S的取值范围.
已知过点
的动直线
与抛物线
相交于
两点,当直线
的斜率是
时,
。
(1)求抛物线
的方程;(5分)
(2)设线段
的中垂线在
轴上的截距为
,求
的取值范围。(7分)