本题满分10分)
一艘轮船按照北偏西50°的方向,以15海里每小时的速度航行,一个灯塔M原来在轮船的北偏东10°方向上,经过40分钟,轮船与灯塔的距离是海里,则灯塔和轮船原来的距离为多少?
(本大题满分12分)对于在区间上有意义的两个函数
与
,如果对任意的
,均有
,则称
与
在
上是接近的,否则称
与
在
上是非接近的.现在有两个函数
与
,现给定区间
.
(1)若,判断
与
是否在给定区间上接近;
(2)若与
在给定区间
上都有意义,求
的取值的集合
;
(3)在(2)的条件下,是否存在,使得
与
在给定区间
上是接近的;若存在,求
的取值范围;若不存在,请说明理由.
(本大题满分12分)定义在上的函数
满足:①对任意
且
,都有
成立; ②
在
上是奇函数,且
.
(1)求证:在
上是单调递增函数;
(2)解关于不等式
;
(3)若对所有的
及
恒成立,求实数
的取值范围.
(本大题满分12分)如图所示,有一块半径为的半圆形钢板,设计剪裁成矩形ABCD的形状,它的边
在圆O的直径上,边CD的端点在圆周上,若设矩形的边
为
;
(1)将矩形的面积表示为关于
的函数,并求其定义域;
(2)求矩形面积的最大值及此时边的长度.
(本大题满分12分)已知函数;
(1)求函数的定义域;
(2)试判断函数的奇偶性并证明;
(3)若,求函数
的值域.
(本大题满分12分)已知集合,
;
(1)若,求
;
(2)若,求实数
的取值范围.