班主任为了对本班学生的考试成绩进行分析,决定从全班25名女同学,15名男同学中随机抽取一个容量为8的样本进行分析.
(Ⅰ)如果按性别比例分层抽样,可以得到多少个不同的样本?(只要求写出算式即可,不必计算出结果).
(Ⅱ)随机抽出8位,他们的数学分数从小到大排序是:60、65、70、75、80、85、90、95,物理分数从小到大排序是:72、77、80、84、88、90、93、95.
若规定85分以上(包括85分)为优秀,求这8位同学中恰有3位同学的数学和物理分数均为优秀的概率;
(2)若这8位同学的数学、物理分数对应如下表:
学生编号 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
数学分数x |
60 |
65 |
70 |
75 |
80 |
85 |
90 |
95 |
物理分数y |
72 |
77 |
80 |
84 |
88 |
90 |
93 |
95 |
根据上表数据用变量y与x的相关系数或散点图说明物理成绩y与数学成绩x之间是否具有线性相关性?如果具有线性相关性,求y与x的线性回归方程(系数精确到0.01);如果不具有线性相关性,请说明理由.
参考公式:相关系数
回归直线的方程是:,
其中对应的回归估计值.
参考数据:
如图,在四棱锥中,底面
是正方形,
底面
,
分别是
的中点,且
.
(Ⅰ)求证:平面
;
(Ⅱ)求证:平面⊥平面
.
(本小题满分12分)已知分别为
三个内角
的对边,
.
(1)求的大小;
(2)若= 7,求
的周长的取值范围.
若二次函数,满足
且
=2.
(1)求函数的解析式;
(2)若存在,使不等式
成立,求实数m的取值范围.
正方形所在平面与平面四边形
所在平面互相垂直,△
是等腰直角三角形,
(1)求证:;
(2)设线段的中点为
,在直线
上是否存在一点
,使得
?若存在,请指出点
的位置,并证明你的结论;若不存在,请说明理由;
如图,已知两个正方形ABCD 和DCEF不在同一平面内,M,N分别为AB,DF的中点。若平面ABCD ⊥平面DCEF,求直线MN与平面DCEF所成角的正弦值.