正方形
所在平面与平面四边形
所在平面互相垂直,△
是等腰直角三角形,

(1)求证:
;
(2)设线段
的中点为
,在直线
上是否存在一点
,使得
?若存在,请指出点
的位置,并证明你的结论;若不存在,请说明理由;
如图,△ABC中,AC=BC=
AB,ABED是边长为1的正方形,EB⊥底面ABC,若G,F分别是EC,BD的中点.
(1)求证:GF∥底面ABC;
(2)求证:AC⊥平面EBC;
圆柱的高是8 cm,表面积是130 π cm2,求它的底面圆半径和体积.
已知数列
满足
(
)且
(1)求
的值
(2)求
的通项公式
(3)令
,求
的最小值及此时
的值
某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为
层,则每平方米的平均建筑费用为
(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?
(注:平均综合费用
平均建筑费用
平均购地费用,平均购地费用
)
已知
是等差数列,且
(1)求数列
的通项公式及前
项的和
(2)令
,求
的前
项的和