一名工人要看管三台机床,在一小时内机床不需要工人照顾的概率对于第一台是0.9,第二台是0.8,第三台是0.85,求在一小时的过程中不需要工人照顾的机床的台数X的数学期望(均值).
设函数
(1)若函数在区间
上是单调递增函数,求实数a的取值范围:
(2)若函数有两个极值点
,且
,求证:
已知椭圆的离心率为
,且过点
(1)求椭圆的标准方程:
(2)四边形ABCD的顶点在椭圆上,且对角线AC,BD过原点O,若
(ⅰ)求的最值:
(ⅱ)求证:四边形ABCD的面积为定值.
数列的各项均为正数,
为其前n项和,对于任意的
,总有
成等差数列
(1)求数列的通项公式:
(2)设数列前n项和为
,且
,求证对任意的实数
和任意的正整数n,总有
.
如图,四棱锥中,
.
,F为PC的中点,
.
(1)求的长:
(2)求二面角的正弦值.
盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同
(1)从盒中一次随机抽出2个球,求取出的2个球颜色相同的概率:
(2)从盒中一次随机抽出4个球,其中红球,黄球,绿球的个数分别记为,随机变量X表示
中的最大数,求X的概率分布列和数学期望
.