甲乙两个学校高三年级分别为1100人,1000人,为了统计两个学校在地区二模考试的数学科目成绩,釆用分层抽样抽取了 105名学生的成绩,并作出了部分频率分布表如下:(规定考试成绩在[120,150]内为优秀)
甲校:
分组 |
[70,80) |
[80,90) |
[90,100) |
[100,110) |
[110,120) |
[120,130) |
[130,140) |
[140,150] |
频数 |
2 |
3 |
10 |
15[ |
15 |
X |
3 |
1 |
乙校:
分组 |
[70,80) |
[80,90) |
[90,100) |
[100,110] |
[110,120) |
[120,130) |
[130,140) |
[140,150] |
频数 |
1 |
2 |
9 |
8 |
10 |
10 |
y |
3 |
(1)计算x, y的值;
(2)由以上统计数据填写下面2X2列联表,并判断是否有97.5%的把握认为两个学校的数学成绩有差异.
附:
P(k2>k0) |
0. 10 |
0. 025 |
0. 010 |
K |
2. 706 |
5. 024 |
6. 635 |
(本小题满分12分)在△ABC中,角A,B, C所对的边分别为a,b,c,已知
(1)求sin( B+C)的值;
(2)若,求b,c的值.
已知函数的图象在点
处的切线的斜率为2.
(Ⅰ)求实数的值;
(Ⅱ)设,讨论
的单调性;
(Ⅲ)已知且
,证明:
已知函数,其中
.
(Ⅰ)若函数在其定义域内单调递减,求实数
的取值范围;
(Ⅱ)若,且关于
的方程
在
上恰有两个不相等的实数根,求实数
的取值范围.
已知函数(
为奇函数,且函数
的图象的两相邻对称轴之间的距离为
.
(Ⅰ)求的值;
(Ⅱ)将函数的图象向右平移
个单位后,得到函数
的图象,求函数
的单调递增区间.
(本小题满分12分)函数的导函数为
.
(Ⅰ)若函数在
处取得极值,求实数
的值;
(Ⅱ)已知不等式对任意
都成立,求实数
的取值范围.