甲乙两个学校高三年级分别为1100人,1000人,为了统计两个学校在地区二模考试的数学科目成绩,釆用分层抽样抽取了 105名学生的成绩,并作出了部分频率分布表如下:(规定考试成绩在[120,150]内为优秀)
甲校:
分组 |
[70,80) |
[80,90) |
[90,100) |
[100,110) |
[110,120) |
[120,130) |
[130,140) |
[140,150] |
频数 |
2 |
3 |
10 |
15[ |
15 |
X |
3 |
1 |
乙校:
分组 |
[70,80) |
[80,90) |
[90,100) |
[100,110] |
[110,120) |
[120,130) |
[130,140) |
[140,150] |
频数 |
1 |
2 |
9 |
8 |
10 |
10 |
y |
3 |
(1)计算x, y的值;
(2)由以上统计数据填写下面2X2列联表,并判断是否有97.5%的把握认为两个学校的数学成绩有差异.
附:
P(k2>k0) |
0. 10 |
0. 025 |
0. 010 |
K |
2. 706 |
5. 024 |
6. 635 |
已知函数,(1)求
的单调区间;(2)若
,求
在区间
上的最值;
已知函数的图像过点
,且在点M
处的切线方程为
(1)求函数的解析式;
(2)求函数的单调区间。
已知椭圆C:的左右焦点分别为
,点B为椭圆与
轴的正半轴的交点,点P在第一象限内且在椭圆上,且与
轴垂直,
(1)求椭圆C的方程;
(2)设点B关于直线的对称点E(异于点B)在椭圆C上,求
的值。
已知三点
(1).求以为焦点且过点P的椭圆的标准方程;
(2)设点P, 关于直线
的对称点分别为
,求以
为焦点且过点
的双曲线的标准方程。
已知是圆
上满足条件
的两个点,其中O是坐标原点,分别过A、B作
轴的垂线段,交椭圆
于
点,动点P满足
.(1)求动点P的轨迹方程;(2)设
和
分别表示
和
的面积,当点P在
轴的上方,点A在
轴的下方时,求
+
的最大值。