如图,等腰梯形ABCD中,AD∥BC,M、N分别是AD、BC的中点,E、F分别是BM、CM的中点.
(1)求证:四边形MENF是菱形;
(2)若四边形MENF是正方形,请探索等腰梯形ABCD的高和底边BC的数量关系并证明你的结论.
如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC与E,交BC与D.求证:
(1)D是BC的中点;
(2)△BEC∽△ADC;
(3)BC2=2AB·CE
如图,一次函数y1=kx+b的图象与反比例函数y2=的图象交于点A﹙-2,-5﹚,C﹙5,n﹚,
(1)求反比例函数y2=和一次函数y1=kx+b的表达式;
(2)观察图象,写出使函数值的自变量
的取值范围
如图,EF是⊙O的直径.
(1)尺规作图:作出⊙O的内接正方形ABCD,使正方形ABCD的对边AD、BC都垂直于EF
(见示意图).
(说明:不要求写作法,但须保留作图痕迹)
(2)连结EA、EB,求出∠EAD、∠EBC的度数
计算:
如图, 已知抛物线与x轴相交于A、B,点B的坐标为(10,0),顶点M的坐标为(4,8),点P从点M出发,以每秒1个单位的速度沿线段MA向A点运动;点Q从点A出发,以每秒2个单位的速度沿AB向B点运动,若P、Q同时出发,当其中的一点到达终点时,另一点也随之停止运动,设运动时间为t秒钟。
(1)求抛物线的解析式;
(2)设△APQ的面积为S,求S与t之间的函数关系式,△APQ的面积是否有最大值?若有,请求出其最大值;若没有,请说明理由;
(3)当t为何值时,△APQ为等腰三角形?