在某次测验中,有6位同学的平均成绩为75分.用表示编号为
的同学所得成绩,且前5位同学的成绩如下:
编号n |
1 |
2 |
3 |
4 |
5 |
成绩![]() |
70 |
76 |
72 |
70 |
72 |
(1)求第6位同学成绩,及这6位同学成绩的标准差
;
(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间中的概率.
已知数列的前
项和为
,且
是
与2的等差中项,数列
中,
,点
在直线
上。
(Ⅰ) 求数列的通项公式
和
;
(Ⅱ) 设,求数列
的前n项和
。
设椭圆过
(2,
) ,
(
,1)两点,
为坐标原点。
(1)求椭圆的方程;
(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆恒有两个交点
且
?若存在,写出该圆的方程,并求
的取值范围,若不存在说明理由。
在直角坐标系中,点P到两点
,
的距离之和等于4,设点P的轨迹为
,直线
与轨迹C交于A,B两点.
(Ⅰ)写出轨迹C的方程;(Ⅱ)若,求k的值;
(Ⅲ)若点A在第一象限,证明:当k>0时,恒有||>|
|
设数列的前项n和为
,若对于任意的正整数n都有
.
(1)求的通项公式。
(2)求数列的前n项和.
给定两个命题, :对任意实数
都有
恒成立;
:关于
的方程
有实数根.如果
∨
为真命题,
∧
为假命题,求实数
的取值范围.