游客
题文

如图,底面为菱形的四棱锥P-ABCD中,∠ABC=60°,AC="1," PA="2," PB=PD=,点M是PD的中点.

(Ⅰ)证明:PA⊥平面ABCD;
(Ⅱ)若AN为PD边的高线,求二面角M-AC-N的余弦值.

科目 数学   题型 解答题   难度 中等
知识点: 空间向量的应用
登录免费查看答案和解析
相关试题

已知函数.设关于x的不等式的解集为且方程的两实根为.
(1)若,求的关系式;
(2)若,求的范围。

已知函数在x=与x =l时都取得极值
(1)求a、b的值与函数f(x)的单调区间
(2)若对x∈(-1,2),不等式f(x)<c2恒成立,求c的取值范围。

某产品在一个生产周期内的总产量为100t,平均分成若干批生产。设每批生产需要投入固定费用75元,而每批生产直接消耗的费用与产品数量x的平方成正比,已知每批生产10t时,直接消耗的费用为300元(不包括固定的费用)。
(1)若每批产品数量为20t,求此产品在一个生产周期的总费用(固定费用和直接消耗的费用)。
(2)设每批产品数量为xt,一个生产周期内的总费用y元,求y与x的函数关系式,并求
出y的最小值。

命题p:函数有零点;
命题q:函数是增函数,
若命题是真命题,求实数的取值范围.

已知,函数.(的图象连续不断)
(1) 求的单调区间;
(2) 当时,证明:存在,使
(3) 若存在属于区间,且,使,证明:

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号