2011年夏季,河南小麦喜获丰收,现有甲种小麦1530吨,乙种小麦1150吨,需安排A、B两种不同规格的货厢50节把小麦全部运往上海.已知用一节A型货厢的运费是0.5万元,用一节B型货厢的运费是0.8万元.
(1)设运输这批小麦的总运费为y (万元),用A型货箱的节数为x (节),试写出y与x之间的函数关系式;
(2)已知甲种小麦35吨和乙种小麦15吨,可装满一节A型货厢;甲种小麦25吨和乙种小麦35吨可装满一节B型货厢,按此要求安排A、B两种货厢的节数,有哪几种运输方案?请你设计出来.
(3)利用函数的性质说明,在这些方案中,哪种方案总运费最少?最少运费是多少万元?
已知关于的方程
有实根。
(1)求
的值;
(2)若关于
的方程
的所有根均为整数,求整数
的值。
如图①,△ABC,,∠ABC=
,将△ABC绕点A顺时针旋转得△AB ¢C ¢,设旋转的角度是
。
(1)如图②,当
= °(用含
的代数式表示)时,点B ¢恰好落在CA的延长线上;
(2)如图③,连结BB ¢、CC ¢,CC ¢的延长线交斜边AB于点E,交BB ¢于点F.请写出图中两对相似三角形 , 。
(不含全等三角形)。
已知:如图,在△ABC中,AB=AC= 5,BC= 8,D,E分别为BC,AB边上一点,∠ADE=∠C.(1)求证:△BDE∽△CAD;
(2)若CD=2,求BE的长。
对于抛物线。
(1)它与x轴交点的坐标为,与y轴交点的坐标为,
顶点坐标为;(2)在坐标系中利用描点法画出此抛物线;
(3)利用以上信息解答下列问题:若关于x的一元二次方程
(t为实数)在
<x<
的范围内有解,则t的取值范围是。
某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件。(1)求商场经营该商品原来一天可获利润多少元?
(2)若商场经营该商品一天要获得最大利润,则每件商品应降价多少元?