已知:在矩形AOBC中,OB=4,OA=3,分别以OB、OA所在直线为x轴和y轴,建立如图所示的平面直角坐标系,F是边BC上的一个动点(不与B、C重合),过F点的反比例函数(k>0)的图象与AC边交于点E.
(1)求证:△AOE与△BOF的面积相等.
(2)记S=S△OEF-S△ECF,求当k为何值时,S有最大值,最大值为多少?
(3)请探索:是否存在这样的点F,使得将△CEF沿EF对折后,C点恰好落在OB上?若存在,请直接写出点F的坐标,若不存在,请说明理由.
(共7分)
小江计划将鱼在年底打捞出来运往某地出售,为了预订车辆运输,必须知道鱼塘内共有多少千克的鱼,他第一次从鱼塘中打捞出100条鱼,共240kg,作上记号后,又放回鱼塘.过了两天,又捞出200条鱼,共510kg,且发现其中有记号的鱼只有4条.
(1)估计鱼塘中总共有多少条鱼?
(2)若平均每千克鱼可获利润5元,预计小江今年卖鱼总利润约多少钱?
如图,小芳和小丽想测量学校旗杆的高度,她们来到操场,小芳测得小丽身高1.6米,在阳光下的影子长度为2.4米,她想立刻测量旗杆的影长时,因旗杆靠近一教学楼,影子不全落在地面上,有一部分落在墙上,测得落在地面上影长为12米,留在墙上的影高为2米,求旗杆的高度.
解方程(每小题5分,共10分):
(1)
(2)
已知:如图,△DAC、△EBC均是等边三角形,点A、C、B在同一条直线上,且AE、BD分别与CD、CE交于点M、N.
求证:(1)AE=DB;
(2)△CMN为等边三角形.
某学校计划组织240名师生集体外出活动,计划租用甲、乙两种型号客车共6辆.已知甲、乙两种大客车的载客量和租金如下表,设租用甲种客车辆,租车总费用
元.
(1)求出表示与
的函数关系式.
(2)给出最节省费用的租车方案;最节省费用为多少?