(宜宾)如图,某市对位于笔直公路AC上两个小区A、B的供水路线进行优化改造.供水站M在笔直公路AD上,测得供水站M在小区A的南偏东60°方向,在小区B的西南方向,小区A、B之间的距离为米,求供水站M分别到小区A、B的距离.(结果可保留根号)
如图11所示,已知抛物线与
轴交于A、B两点,与
轴交于点C.
求A、B、C三点的坐标
过点A作AP∥CB交抛物线于点P,求四边形ACBP的面积.
在
轴上方的抛物线上是否存在一点M,过M作MG
轴于点G,使以A、M、G三点为顶点的三角形与
PCA相似.若存在,请求出M点的坐标;否则,请说明理由.
如图,某小区有一长为30m,宽为20m的广场,图案如下,其中白色区域四周出口的宽度一样.小明在规定地点随意向图案内投掷小球,每球都能落在图案内,经过多次试验,发现落在黑色区域的概率是,那么白色区域四周出口的宽度应是多少?
如图,AB是半圆O的直径,AD为弦,BC是半圆O的切线,OC∥AD,求证:CD是半圆O的切线
若BD=BC=6,求AD的长.
如图,在平面直角坐标系中,△ABC的三个顶点
坐标分别是A(2,3)、B(2,1)、C(3,2).
①判断△ABC的形状;②如果将△ABC沿着边AC旋转,求所得旋转体的全面积如图,方格纸中有三个点A,B,C,要求作一个四边形使这三个点在这个四边形的边(包括顶点)上,且四边形的顶点在方格的格点上.
①在图甲中作出的四边形是中心对称图形但不是轴对称图形;
②在图乙中作出的四边形是轴对称图形但不是中心对称图形;
③在图丙中作出的四边形既是轴对称图形又是中心对称图形.
如图,已知:抛物线,
关于
轴对称;抛物线
,
关于
轴对称。
如果抛物线的解析式是
,那么抛物线
的解析式
是.