.(本小题满分12分)已知椭圆的中心在原点,焦点在轴上,一个顶点为
,且其右焦点到直线
的距离为3.
(1)求椭圆的方程;
(2)是否存在斜率为 ,且过定点
的直线
,使
与椭圆交于两个不同的点
、
,且
?若存在,求出直线
的方程;若不存在,请说明理由.
在中,角
,
,
的对边为
,
,
且;
(Ⅰ)求的值;
(Ⅱ)若,
,求
的值.
已知坐标平面内:
,
:
.动点P与
外切与
内切.
(1)求动圆心P的轨迹的方程;
(2)若过D点的斜率为2的直线与曲线交于两点A、B,求AB的长;
(3)过D的动直线与曲线交于A、B两点,线段中点为M,求M的轨迹方程.
设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6, 且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的.
(1)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率;
(2)记表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求
的分布列及期望.
(1)求的展开式中的常数项;
(2)已知,
求的值.
二面角大小为
,半平面
内分别有点A、B,
于C、
于D,已知AC=4、CD=5,DB=6,求线段AB的长.