游客
题文

提高南洋大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度(单位:千米/小时)是车流密度(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当时,车流速度是车流密度的一次函数.
(Ⅰ)当时,求函数的表达式; (Ⅱ)当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时) 可以达到最大,并求出最大值.(精确到1辆/小时)

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题


(本小题满分12分)
设函数f()=,其中,角的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且.
(1)若点P的坐标为,求的值;
(II)若点P(x,y)为平面区域Ω:,上的一个动点,试确定角的取值范围,并求函数的最小值和最大值.


(本小题满分12分)
如图,直线l :y=x+b与抛物线C :x2=4y相切于点A。
(1)求实数b的值;
(11)求以点A为圆心,且与抛物线C的准线相切的圆的方程.

(本小题满分14分)
已知a,b为常数,且a≠0,函数(e=2.71828…是自然对数的底数).
(I)求实数b的值;
(II)求函数f(x)的单调区间;
(III)当a=1时,是否同时存在实数m和M(m<M),使得对每一个t∈[m,M],直线y=t与曲线都有公共点?若存在,求出最小的实数m和最大的实数M;若不存在,说明理由.

(本小题满分12分)
如图,四棱锥P-ABCD中,PA⊥底面ABCDABAD,点E在线段AD上,且CE∥AB
(1)求证:CE⊥平面PAD
(11)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱锥P-ABCD的体积

(本小题满分12分)
某日用品按行业质量标准分成五个等级,等级系数X依次为1,2,3,4,5.现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下:
(1)若所抽取的20件日用品中,等级系数为4的恰有3件,等级系数为5的恰有2件,求a、b、c的值;
(11)在(1)的条件下,将等级系数为4的3件日用品记为x1, x2, x3,等级系数为5的2件日用品记为y1,y2,现从x1, x2, x3, y1, y2,这5件日用品中任取两件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这两件日用品的等级系数恰好相等的概率.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号