(本小题满分12分)
如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB。
(1) 求证:CE⊥平面PAD;
(11)若PA=AB=1,AD=3,CD=
,∠CDA=45°,求四棱锥P-ABCD的体积
已知函数f(x)=
(1)f(x)在x=0处是否连续?说明理由;
(2)讨论f(x)在闭区间[-1,0]和[0,1]上的连续性.
已知函数f(x)=
(1)讨论f(x)在点x=-1,0,1处的连续性;
(2)求f(x)的连续区间。
求证:方程x=asinx+b(a>0,b>0)至少有一个正根,且它不大于a+b.
已知函数f(x)=
,
(1)求f(x)的定义域,并作出函数的图像;
(2)求f(x)的不连续点x0;
(3)对f(x)补充定义,使其是R上的连续函数.
袋子A和B中装有若干个均匀的红球和白球,从A中摸出一个红球的概率是
,从B中摸出一个红球的概率为p.
(Ⅰ) 从A中有放回地摸球,每次摸出一个,有3次摸到红球即停止.
(i)求恰好摸5次停止的概率;
(ii)记5次之内(含5次)摸到红球的次数为
,求随机变量
的分布率及数学期望E
.
(Ⅱ) 若A、B两个袋子中的球数之比为12,将A、B中的球装在一起后,从中摸出一个红球的概率是
,求p的值.