(本小题满分14分)三棱柱的直观图及三视图(正视图和俯视图是正方形,侧视图是等腰直角三角形)如图所示,
为
的中点.
(1)求证:平面
;
(2)求二面角的正切值.
某酒厂有甲、乙两条生产线生产同一种型号的白酒。产品在自动传输带上包装传送,每15分钟抽一瓶测定其质量是否合格,分别记录抽查的数据如下(单位:毫升):
甲生产线:508, 504, 496, 510, 492, 496
乙生产线:515, 520, 480, 485, 497, 503
问:(1) 这种抽样是何种抽样方法?
(2)分别计算甲、乙两条生产线的平均值与方差,并说明哪条生产线的产品较稳定。
(本题12分)
在测量一根新弹簧的劲度系数时,测得了如下的结果:
所挂重量(N)(![]() |
1 |
2 |
3 |
5 |
7 |
![]() |
弹簧长度(cm)(y) |
11 |
12 |
12 |
13 |
14 |
16 |
(1)请画出上表所给数据的散点图;
(2)弹簧长度与所挂重量之间的关系是否具有线性相关性,若具有请根据上表提供的数据,求出y关于x的线性回归方程=bx+a;
(3)根据回归方程,求挂重量为8N的物体时弹簧的长度.所求的长度是弹簧的实际长度吗?为什么?
(本题12分)
某校高二年级的
名学生参加一次科普知识竞赛,然后随机抽取
名学生的成绩进行统计分析.
(1)完成频率分布表;
(2)根据上述数据画出频率分布直方图;
(3)估计这次竞赛成绩在80分以上的学生人数是多少?
(4)估计这次竞赛中成绩的平均分是多少?
(本题8分)
在一个不透明的袋子中装有分别标注数字1,2,3,4的四个小球,这些小球除标注的数字外完全相同,现从中一次摸出两个小球.
(1)请写出所有的基本事件;
(2)求摸出的两个小球标注的数字之和为5的概率.
(本小题满分14分)
已知函数
(Ⅰ)求f(x)在[-1,e](e为自然对数的底数)上的最大值;
(Ⅱ)对任意给定的正实数a,曲线y= f(x)上是否存在两点P,Q,使得△POQ是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上?