函数在一个周期内的图象如图所示,
为图象的最高点,
、
为图象与
轴的交点,且
为正三角形。
(Ⅰ)求的值及函数
的值域;
(Ⅱ)若,且
,求
的值。
在平面直角坐标系xOy中,已知椭圆C1:=1(a>b>0)的左焦点为F1(-1,0),且点P(0,1)在C1上.
(1)求椭圆C1的方程;
(2)设直线l同时与椭圆C1和抛物线C2:y2=4x相切,求直线l的方程.
在△ABC中,角A、B、C的对边分别是.已知
(1)求角C的大小;
(2)若,求△ABC外接圆半径.
设函数图象的一条对称轴是直线
.
(1)求;
(2)求f(x)的最小正周期、单调增区间及对称中心.
(1)已知a>b>c,且a+b+c=0,用分析法求证:<a.
(2)f(x)=,先分别求f(0)+f(1),f(-1)+f(2),f(-2)+f(3),然后归纳猜想一般性结论,并给出证明.
已知函数(k为常数,e=2.71828…是自然对数的底数),曲线
在点
处的切线与x轴平行.
(1)求k的值及的单调区间;
(2)设其中
为
的导函数,证明:对任意
,
.