A,B两城相距600千米,甲、乙两车同时从A城出发驶向B城,甲车到达B城后立即返回.如图是它们离A城的距离y(千米)与行驶时间 x(小时)之间的函数图象.
(1)求甲车行驶过程中y与x之间的函数解析式,并写出自变量x的取值范围;
(2)当它们行驶7了小时时,两车相遇,求乙车速度.
如图,在△ABC中,∠B=30°,∠C=66°,AE⊥BC于E,AD平分∠BAC,求∠DAE的度数.
已知y+4与x-3成正比例,且x=5时y=4.
(1)求y与x之间的函数关系式;
(2)当y=4时,求x的值.
(本题12分)射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=MB=2cm,
QM=4cm.动点P从点Q出发,沿射线QN以每秒1cm的速度向右移动,经过t秒,以点P为圆心,cm
为半径的圆与△ABC的边相切(切点在边上),求t值(单位:秒).
(本题12分))如图,点B、C、D都在⊙O上,过点C作AC∥BD交OB延长线于点A,连接CD,且∠CDB=∠OBD=30°,DB=cm.
(1)直线AC与⊙O有怎样的位置关系?为什么?
(2)求由弦CD、BD与弧BC所围成的阴影部分的面积.(结果保留π)
(本题10分)某校九年级举行毕业典礼,需要从九(1)班的2名男生1名女生、九(2)的1
名男生1名女生共5人中选出2名主持人.
(1)用树形图或列表法列出所有可能情形;
(2)求2名主持人来自不同班级的概率;
(3)求2名主持人恰好1男1女的概率.