A. [选修4-1:几何证明选讲](本小题满分10分)
如图,AB是⊙O的直径,C是⊙O外一点,且AC=AB,BC交⊙O于点D.
已知BC=4,AD=6,AC交⊙O于点E,求四边形ABDE的周长.
在△ABC中,;(1)求:AB2+AC2的值;(2)当△ABC的面积最大时,求A的大小.
已知函数f (x)=| x-a | + | x + 2 |(a为常数,且a∈R).
(Ⅰ)若函数f (x)的最小值为2,求a的值;
(Ⅱ)当a=2时,解不等式f (x)≤6.
在极坐标系中,已知两点O(0,0),B(2,
).
(Ⅰ)求以OB为直径的圆C的极坐标方程,然后化成直角坐标方程;
(Ⅱ)以极点O为坐标原点,极轴为轴的正半轴建立平面直角坐标系,直线l的参数方程为
(t为参数).若直线l与圆C相交于M,N两点,圆C的圆心为C,求DMNC的面积.
如图,已知C、F是以AB为直径的半圆上的两点,且CF=CB,过C作CD^AF交AF的延长线与点D.
(Ⅰ)证明:CD为圆O的切线;
(Ⅱ)若AD=3,AB=4,求AC的长.
已知函数f (x)=-ax3+
x2+(a-1)x-
(x>0),(aÎR).
(Ⅰ)当0<a<时,讨论f (x)的单调性;
(Ⅱ)若f (x)在区间(a, a+1)上不具有单调性,求正实数a的取值范围.