(1)如图一,等边△ABC中,D是AB上的动点,以CD为一边,向上作等边△EDC,连结AE。求证:AE//BC;
(2)如图二,将(1)中等边△ABC的形状改成以BC为底边的等腰三角形。所作△EDC改成相似于△ABC。请问:是否仍有AE//BC?证明你的结论。
如图6,在梯形ABCD中,AB∥CD,AD =DC,求证:AC是∠DAB的平分线.
(本小题10分)在等腰梯形ABCD中,AD∥BC,且AD=2,以CD为直径作⊙
O1,交BC于点E,过点E作EF⊥AB于F,建立如图12所示的平面直角坐标系,已知A,
B两点的坐标分别为A(0,2),B(-2,0).
(1)求C,D两点的坐标.
(2)求证:EF为⊙O1的切线.
(3)探究:如图13,线段CD上是否存在点P,使得线段PC的长度与P点到y轴的距离相等?如果存在,请找出P点的坐标;如果不存在,请说明理由.
(本小题10分)如图11,已知二次函数y= -x2 +mx +4m的图象与x轴交于
A(x1,0),B(x2,0)两点(B点在A点的右边),与y轴的正半轴交于点C,且(x1+x2)- x1x2=10.
(1)求此二次函数的解析式.
(2)写出B,C两点的坐标及抛物线顶点M的坐标;
(3)连结BM,动点P在线段BM上运动(不含端点B,M),过点P作x轴的垂线,垂足为H,设OH的长度为t,四边形PCOH的面积为S.请探究:四边形PCOH的面积S有无最大值?如果有,请求出这个最大值;如果没有,请说明理由.
(本小题9分)如图10,在直角三角形ABC中,ÐACB=90°,AC=BC=10,将△
ABC绕点B沿顺时针方向旋转90°得到△A1BC1.
(1)线段A1C1的长度是 ,ÐCBA1的度数是 .
(2)连结CC1,求证:四边形CBA1C1是平行四边形.
(本小题8分)为建设节约型、环境友好型社会,克服因干旱而造成的电力紧张
困难,切实做好节能减排工作.某地决定对居民家庭用电实际“阶梯电价”,电力公司规定:
居民家庭每月用电量在80千瓦时以下(含80千瓦时,1千瓦时俗称1度)时,实际“基本
电价”;当居民家庭月用电量超过80千瓦时时,超过部分实行“提高电价”.
(1)小张家2011年4月份用电100千瓦时,上缴电费68元;5月份用电120千瓦时,上缴电费88元.求“基本电价”和“提高电价”分别为多少元/千瓦时?
(2)若6月份小张家预计用电130千瓦时,请预算小张家6月份应上缴的电费.