如图1,点将线段
分成两部分,如果
,那么称点
为线段
的黄金分割点.
某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线将一个面积为
的图形分成两部分,这两部分的面积分别为
,
,如果
,那么称直线
为该图形的黄金分割线.
(1)研究小组猜想:在中,若点
为
边上的黄金分割点(如图2),则直线
是
的黄金分割线.你认为对吗?为什么?
(2)请你说明:三角形的中线是否也是该三角形的黄金分割线?
(3)研究小组在进一步探究中发现:过点任作一条直线交
于点
,再过点
作直线
,交
于点
,连接
(如图3),则直线
也是
的黄金分割线.
请你说明理由.
(4)如图4,点是
的边
的黄金分割点,过点
作
,交
于点
,显然直线
是
的黄金分割线.请你画一条
的黄金分割线,使它不经过
各边黄金分割点.
如图,在平面直角坐标系中,直角梯形的边
落在
轴的正半轴上,且
∥
,
,
=4,
=6,
=8.正方形
的两边分别落在坐标轴上,且它的面积等于直角梯形
面积。将正方形
沿
轴的正半轴平行移动,设它与直角梯形
的重叠部分面积为
。
(1)分析与计算:
求正方形的边长;
(2)操作与求解:
①正方形平行移动过程中,通过操作、观察,试判断
(
>0)的变化情况是 ;
A.逐渐增大 | B.逐渐减少 | C.先增大后减少 | D.先减少后增大 |
②当正方形顶点
移动到点
时,求
的值;
(3)探究与归纳:
|
设正方形的顶点
向右移动的距离为
,求重叠部分面积
与
的函数关系式。
已知抛物线与x轴交于两点
、
,与y轴交于点C,AB=6.
(1)求抛物线和直线BC的解析式.
(2)在给定的直角坐标系中,画出抛物线和直线BC.
(3)若⊙P过A、B、C三点,求⊙P的半径.
(4)抛物线上是否存在点M,过点M作轴于点N,使
被直线BC分成面积比为
的两部
分?若存在,请求出点M的坐标;若不存在,请说明理由.
某土产公司组织20辆汽车装运甲、乙、丙三种土特产共120吨去外地销售.按计划20辆车都要装运,每辆汽车只能装运同一种圭特产,且必须装满.根据下表提供的信息,解答以下问题:
土特产种类 |
甲 |
乙 |
丙 |
每辆汽车运载量(吨) |
8 |
6 |
5 |
每吨土特产获利(百元) |
12 |
16 |
10 |
(1)设装运甲种土特产的车辆数为,装运乙种土特产的车辆数为
,求
与
之间的函数关系式.
(2)如果装运每辆土特产的车辆都不少于3辆,那么车辆的安排方案有几种?并写出每种安排方案.
(3)若要使此次销售获利最大,应采用(2)中哪种安排方案?并求出最大利润的值.
如图,在水平面上放置一圆锥,在圆锥顶端斜靠着一根木棒(木棒的厚度可忽略不计)
小明为了探究这个问题,将此情景画在了草稿纸上(如右图所示):运动过程:木棒顶端从A点开始沿圆锥的母线下滑,速度为(木棒下滑为匀速)已知木棒与水平地面的夹角为
,
随木棒的下滑而不断减小。
的最大值为30°,若木棒长为
。问:当木棒顶端从A滑到B这个过程中,木棒末端的速度
为多少?
为缓解“停车难”的问题,某单位拟建造地下停车库,建筑设计师提供了该地下停车库的设计示意图,按规定,地下停车库坡道口上方要张贴限高标志,以便告知停车人车辆能否安全驶入,为标明限高,请你根据该图计算CE.(精确到0.1m)
(下列数据提供参考:20°=0.3420,
20°=0.9397,
20°=0.3640)