如图,在四棱锥E-ABCD中,AB⊥平面BCE,CD⊥平面BCE,AB=BC=CE=2CD=2,∠BCE=1200.
(I)求证:平面ADE⊥平面ABE ;
(II)求二面角A—EB—D的大小的余弦值.
某食品企业一个月内被消费者投诉的次数用ξ表示,椐统计,随机变量ξ的概率分布如下:
(Ⅰ)求a的值和ξ的数学期望;
(Ⅱ)假设一月份与二月份被消费者投诉的次数互不影响,求该企业在这两个月内共被消费者投诉2次的概率.
已知命题,
,命题
,若命题“
”是真命题,求实数a的取值范围.
设全集为R,,
,
.
(Ⅰ)求及
;
(Ⅱ)若,求实数a的取值范围.
已知函数.
(Ⅰ)当时,求曲线
在
处的切线方程;
(Ⅱ)设函数,求函数
的单调区间;
(Ⅲ)若,在
(e=2.71828…)上存在一点x0,使得
成立,求a的取值范围.
某大学准备在开学时举行一次大学一年级学生座谈会,拟邀请20名来自本校机械工程学院、海洋学院、医学院、经济学院的学生参加,各学院邀请的学生数如下表所示:
(Ⅰ)从这20名学生中随机选出3名学生发言,求这3名学生中任意两个均不属于同一学院的概率;
(Ⅱ)从这20名学生中随机选出3名学生发言,设来自医学院的学生数为ξ,求随机变量ξ的概率分布列和数学期望.