已知中,
为
边的中点,
绕
点旋转,它的两边分别交
、
(或它们的延长线)于
、
当绕
点旋转到
于
时(如图1),易证
当绕
点旋转到
不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,
、
、
又有怎样的数量关系?请写出你的猜想,不需证明.
某工厂在生产过程中要消耗大量电能,消耗每千度电产生利润与电价是一次函数关系,经过测算,工厂每千度电产生利润y(元/千度))与电价x(元/千度)的函数图象如图:
(1)当电价为600元千度时,工厂消耗每千度电产生利润是多少?
(2)为了实现节能减排目标,有关部门规定,该厂电价x(元/千度)与每天用电量m(千度)的函数关系为x=10m+500,且该工厂每天用电量不超过60千度,为了获得最大利润,工厂每天应安排使用多少度电?工厂每天消耗电产生利润最大是多少元?
如图,点E是矩形ABCD中CD边上一点,△BCE沿BE折叠为△BFE,点F落在AD上.
(1)求证:△ABE∽△DFE
(2)若sin∠DFE=,求tan∠EBC的值.
关于的一元二次方程
的实数解是
和
(1)求
的取值范围;
(2)如果
且
为整数,求
的值.
如图,等腰梯形ABCD中,AD∥BC,点E,F在BC上,且BE=FC,连接DE,AF.求证:DE=AF.
在一个不透明的口袋中装有4张相同的纸牌,它们分别标有数字1,2,3,4.随机地摸取出一张纸牌然后放回,在随机摸取出一张纸牌,(1)计算两次摸取纸牌上数字之和为5的概率;
(2)甲、乙两个人进行游戏,如果两次摸出纸牌上数字之和为奇数,则甲胜;如果两次摸出纸牌上数字之和为偶数,则乙胜.这是个公平的游戏吗?请说明理由.