如图,已知四棱锥S-ABCD的底面ABCD是正方形,SA⊥底面ABCD,E是SC上的一点.
(1)求证:平面EBD⊥平面SAC;
(2)设SA=4,AB=2,求点A到平面SBD的距离;
在等差数列{an}中,为其前n项和
,且
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设,求数列
的前
项和
.
已知函数,
,且
的解集为
.
(Ⅰ)求的值;
(Ⅱ)若,且
,求证:
已知曲线的参数方程是
(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程是ρ=2,正方形ABCD的顶点都在
上,且A,B,C,D依逆时针次序排列,点A的极坐标为
.
(Ⅰ)求点A,B,C,D的直角坐标;
(Ⅱ)设P为上任意一点,求
的取值范围.
如图,、
是圆
的半径,且
,
是半径
上一点:延长
交圆
于点
,过
作圆
的切线交
的延长线于点
.求证:
.
已知函数.
(Ⅰ)当时,求函数
的单调区间;
(Ⅱ)当时,不等式
恒成立,求实数
的取值范围.
(Ⅲ)求证:(
,e是自然对数的底数).