已知点、
到直线
的距离相等,且直线
经过两条直线
和
的交点,求直线
的方程。
(本小题14分)抛物线与直线
相交于
两点,且
(1)求的值。
(2)在抛物线上是否存在点
,使得
的重心恰为抛物线
的焦点
,若存在,求点
的坐标,若不存在,请说明理由。
(本小题13分)已知函数在点
处的切线与直线
垂直.
(1)若对于区间上任意两个自变量的值
都有
,求实数
的最小值;
(2)若过点可作曲线
的三条切线,求实数
的取值范围.
(本小题12分)已知:以点C (t, )(t∈R , t ≠ 0)为圆心的圆与
轴交于点O, A,
与y轴交于点O, B,其中O为原点.
(1)求证:△OAB的面积为定值;
(2)设直线y = –2x+4与圆C交于点M, N,若,求圆C的方程.
本小题12分)已知命题p:方程表示焦点在y轴上的椭圆;命题q:双曲线
的离心率
,若p、q有且只有一个为真,求m的取值范围。