设是公差不为零的等差数列,
为其前
项和,满足
且
、
、
成等比数列.
(Ⅰ)求数列的通项公式;
(Ⅱ)设数列满足:
,
,
为数列
的前
项和,问是否存在正整数
,使得
成立?若存在,求出
;若不存在,请说明理由.
如图,在正方体中,
为
上不同于
的任一点,
,求证:
(1)平面
;(2)
.
设,
.
(1)当*时,求
的子集的个数;
(2)当且
时,求
的取值范围.
已知函数.
(1)若a=2,解不等式;
(2)若a>1,任意,求实数a的取值范围.
平面直角坐标系中,直线l的参数方程(t为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为
(1)求直线l的极坐标方程;(2)若直线l与曲线C相交于A,B两点,求|AB|.
如图,AB是圆O的直径,弦CD⊥AB于点M,E是CD延长线上一点,AB=10,CD=8,3ED=4OM,EF切圆O于F,BF交CD于G.
(1)求证:△EFG为等腰三角形;
(2)求线段MG的长.