某市为增强市民的环境保护意识,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组,第2组
,第3组
,第4组
,第5组
,得到的频率分布直方图如图所示.
(1)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?
(2)在(1)的条件下,该县决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.
在平面直角坐标系中,已知的两个顶点坐标分别是
、
,另两边
的斜率之积为
.
(1)求顶点的轨迹
的方程;
(2)若轨迹上点
与轨迹
的两焦点构成
,且
=
, 求
的面积
设命题p :方程有两个不等的负实根; 命题q :方程
无实根. 若命题p或q为真命题,命题p且q为假命题,求实数m的取值范围.
某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.
已知这100位顾客中一次购物量超过8件的顾客占55%.
(1)确定x,y的值,并求顾客一次购物的结算时间的平均值;
(2)求一位顾客一次购物的结算时间不超过2 min的概率.
(注:将频率视为概率)
已知:
,
:
,若
是
的必要不充分条件,求实数m的取值范围.
(1)试用辗转相除法求840与1 764的最大公约数.
(2)利用秦九韶算法求多项式f(x)=2x5+4x4-2x3+8x2+7x+4当x=3的值,写出每一步的计算表达式.