游客
题文

已知一个等边三角形的周长为a,求这个三角形的面积.设计一个算法解决这个问题.

科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

已知椭圆 C: y2 a2 + x2 b2 =1 a > b > 0 的离心率为 5 3 ,点 A - 2 , 0 C 上.

(1)求 C 的方程;

(2)过点 - 2 , 3 的直线交 C 于点 P Q 两点,直线 AP AQ y 轴的交点分别为 M N ,证明:线段 MN 的中点为定点.

如图,在三棱锥 P-ABC 中, ABBC AB=2 BC=2 2 PB=PC= 6 AD= 5 DO BP AP BC 的中点分别为 D E O ,点 F AC 上, BFAO

(1)证明: EF 平面 ADO

(2)证明:平面 ADO 平面 BEF

(3)求二面角 D-AO-C 的正弦值.

ABC 中,已知 BAC=120° AB=2 AC=1

(1)求 sinABC

(2)若 D BC 上一点.且 BAD=90° ,求 ADC 的面积.

某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行 10 次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率,甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为 x i y i i = 1 , 2 , . . . 10 .试验结果如下:

试验序号 i

1

2

3

4

5

6

7

8

9

10

伸缩率 x i

545

533

551

522

575

544

541

568

596

548

伸缩率 y i

536

527

543

530

560

533

522

550

576

536

z i = x i - y i i = 1 , 2 , . . . 10 ,记 z 1 , z 2 ,... z 10 的样本平均数为 z ¯ ,样本方差为 s2

(1)求 z ¯ s2

(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高.(如果 z ¯ 2 s2 10 ,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高)

[选修4-5:不等式选讲]

已知 f x =2 x + x - 2

(1)求不等式 f x 6-x 的解集;

(2)在直角坐标系 xOy 中,求不等式组 f x y x + y - 6 0 所确定的平面区域的面积.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号