(本小题满分12分)已知函数的图象与轴的交点为,它在轴右侧的第一个最高点和第一个最低点的坐标分别为和.(1)求的解析式; (2)若锐角满足,求的值.
已知等比数列的各项均为正数,,. (Ⅰ)求数列的通项公式;(Ⅱ)设.证明:为等差数列,并求的前项和.
设数列{an} 的前n项和为Sn,满足2Sn=an+1﹣2n+1+1,n∈N*,且a1,a2+5,a3成等差数列. (1)求a1,a2,a3的值; (2)求证:数列{an+2n}是等比数列; (3)证明:对一切正整数n,有++…+<.
已知函数. (Ⅰ)求的单调区间; (Ⅱ)若在区间上恒成立,求实数的取值范围.
在中,三个内角所对边的长分别为,已知. (Ⅰ)判断的形状; (Ⅱ)设向量,若,求.
已知函数,其中,曲线在点处的切线垂直于轴. (Ⅰ)求的值; (Ⅱ)求函数的极值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号