姚明是我国著名的篮球运动员,他在2005-2006赛季NBA常规赛中表现非常优异。下面是他在这个赛季中,分期与“超音速队”和“快船队”各四场比赛中的技术统计。
场次 |
对阵超音速 |
对阵快船 |
||||
得分 |
篮板 |
失误 |
得分 |
篮板 |
失误 |
|
第一场 |
22 |
10 |
2 |
25 |
17 |
2 |
第二场 |
29 |
10 |
2 |
29 |
15 |
0 |
第三场 |
24 |
14 |
2 |
17 |
12 |
4 |
第四场 |
26 |
10 |
5 |
22 |
7 |
2 |
(1)请分别计算姚明在对阵“超音速”和“快船”两队的各四场比赛中,平均每场得多少分?
(2)请你从得分的角度分析,姚明在与“超音速”和“快船”的比赛中,对阵哪一个队的发挥更稳定?
(3)如果规定“综合得分”为:平均每场得分×1+平均每场篮板×1.5十平均每场失误×(-1.5),且综合得分越高表现越好,那么请你利用这种评价方法,来比较姚明在分别与“超音速”和“快船”的各四场比赛中,对阵哪一个队表现更好?
如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,BD分别与AE、AF相交于G、H.
(1)在图中找出与△ABE相似的三角形,并说明理由;
(2)若AG=AH,求证:四边形ABCD是菱形.
(1)解方程:.
(2)解不等式组:
计算:
(1)(-2)2-(2-)0+2·tan45°;
(2)先将·(1-
)化简,然后请自选一个你喜欢的x值,再求原式的值.
如图,在矩形ABCD中,AB=6cm,BC=8cm.如果点E由点B出发沿BC方
向向点C匀速运动,同时点F由点D出发沿DA方向向点A匀速运动,它们的速度分别为2cm/s和1cm/s.FQ⊥BC,分别交AC、BC于点P和Q,设运动时间为t(s)(0<t<4).
(1)连结EF、DQ,若四边形EQDF为平行四边形,求t的值;
(2)连结EP,设△EPC的面积为ycm2,求y与t的函数关系式,并求y的最大值;
(3)若△EPQ与△ADC相似,请直接写出t的值.
如图,AB为半圆O的直径,点C在半圆上,CD⊥AB于点D,连结BC,作∠BCP=∠BCD,CP交AB延长线于点P.
(1)求证:PC是半圆O的切线;
(2)求证:PC2=PB•PA;
(3)若PC=2,tan∠BCD=,求
的长.