如图,抛物线F:的顶点为P,抛物线:与y轴交于点A,与直线OP交于点B.过点P作PD⊥x轴于点D,平移抛物线F使其经过点A、D得到抛物线F′:
,抛物线F′与x轴的另一个交点为C.
⑴当a = 1,b=-2,c = 3时,求点C的坐标(直接写出答案);
⑵若a、b、c满足了
①求b:b′的值;
②探究四边形OABC的形状,并说明理由.
解不等式:一x>l,并将解集在数轴上表示出来.
如图,已知直线交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O 上一点,过C作
,垂足为D。问:当AC满足什么条件时,CD为⊙O的切线,请说明理由。
正比例函数y=k1x的图象与反比例函数(x>0)的图象交于点M(a,1),MN⊥x轴于点N(如图),若△OMN的面积等于2,求这两个函数的解式
将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上.
(1)从中随机抽出一张牌,牌面数字是偶数的概率是;
(2)从中随机抽出二张牌,两张牌牌面数字的和是5的概率是;
(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.
如图已知E、F分别是□ABCD的边BC、AD上的点,且BE=DF.
(1) 求证:四边形AECF是平行四边形;
(2) 若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长 .