在正方形ABCD中,对角线AC,BD交于点O,点P在线段BC上(不含点B),∠BPE=∠ACB,PE交BO于点E,过点B作BF⊥PE,垂足为F,交AC于点G.
(1) 当点P与点C重合时(如图①).求证:△BOG≌△POE;
(2)通过观察、测量、猜想:= ,并结合图②证明你的猜想;
(3)把正方形ABCD改为菱形,其他条件不变(如图③),若∠ACB=α,求的值.(用含α的式子表示)
某校对九年级学生进行了一次数学学业水平测试,成绩评定分为A、B、C、D四个等级(注:等级A、B、C、D分别代表优秀、良好、合格、不合格),学校从九年级学生中随机抽取50名学生的数学成绩进行统计分析,并绘制成扇形统计图(如图所示).
根据图中所给的信息回答下列问题:
(1)随机抽取的九年级学生数学学业水平测试中,D等级人数的百分率和D等级学生人数分别是多少?
(2)这次随机抽样中,学生数学学业水平测试成绩的中位数落在哪个等级?
(3)若该校九年级学生有800名,请你估计这次数学学业水平测试中,成绩达合格以上(含合格)的人数大约有多少人?
(5分) 解不等式组:
(6分)如图,点B、D、C、F在一条直线上,且BC = FD,AB = EF.
(1)请你只添加一个条件(不再加辅助线),使△ABC≌△EFD,你添加的条件是;
(2)添加了条件后,证明△ABC≌△EFD.
(5分) 计算:
如图9,已知直线的解析式为
,它与
轴、
轴分别相交于
、
两点,平行于直线
的直线
从原点
出发,沿
轴正方向以每秒
个单位长度的速度运动,运动时间为
秒,运动过程中始终保持
,直线
与
轴,
轴分别相交于
、
两点,线段
的中点为
,以
为圆心,以
为直径在
上方作半圆,半圆面积为
,当直线
与直线
重合时,运动结束.
求、
两点的坐标;
求与
的函数关系式及自变量
的取值范围;
直线在运动过程中,
当
为何值时,半圆与直线
相切?
是否存在这样的
值,使得半圆面积
?若存在,求出
值,若不存在,说明理由.