(本小题满分10分)某班主任对班级22名学生进行了作业量多少的调查,数据如下表:在喜欢玩电脑游戏的12中,有10人认为作业多,2人认为作业不多;在不喜欢玩电脑游戏的10人中,有3人认为作业多,7人认为作业不多.
(1)根据以上数据建立一个列联表;
(2)试问喜欢电脑游戏与认为作业多少是否有关系?
某通讯公司需要在三角形地带区域内建造甲、乙两种通信信号加强中转站,甲中转站建在区域
内,乙中转站建在区域
内.分界线
固定,且
=
百米,边界线
始终过点
,边界线
满足
.
设(
)百米,
百米.
(1)试将表示成
的函数,并求出函数
的解析式;
(2)当取何值时?整个中转站的占地面积
最小,并求出其面积的最小值.
已知复数.
(1)求的最小值;
(2)设,记
表示复数z的虚部).将函数
的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把所得的图像向右平移
个单位长度,得到函数
的图像.试求函数
的解析式.
已知矩形是圆柱体的轴截面,
分别是下底面圆和上底面圆的圆心,母线长与底面圆的直径长之比为
,且该圆柱体的体积为
,如图所示.
(1)求圆柱体的侧面积的值;
(2)若是半圆弧
的中点,点
在半径
上,且
,异面直线
与
所成的角为
,求
的值.
已知函数是定义域为
的偶函数.当
时,
若关于
的方程
有且只有7个不同实数根,则
的值是.
(理)已知点是平面直角坐标系上的一个动点,点
到直线
的距离等于点
到点
的距离的2倍.记动点
的轨迹为曲线
.
(1)求曲线的方程;
(2)斜率为的直线
与曲线
交于
两个不同点,若直线
不过点
,设直线
的斜率分别为
,求
的数值;
(3)试问:是否存在一个定圆,与以动点
为圆心,以
为半径的圆相内切?若存在,求出这个定圆的方程;若不存在,说明理由.