游客
题文

如图1,已知正方形ABCD,将一个45度角的顶点放在D点并绕D点旋转,角的两边分别交AB边和BC边于点E和F,连接EF。求证:EF=AE+CF
(1) 小明是这样思考的:延长BC到G,使得CG=AE,连接DG,先证△DAE≌△DCG,再证△DEF≌△DGF,请你借助图2,按照小明的思路,写出完整的证明思路。
(2)刘老师看到这条题目后,问了小明两个小问题:①如果正方形的边长和△BEF的面积都等于6,求EF的长;②将角绕D点继续旋转,使得角的两边分别和AB边延长线、BC边的延长线交于E和F,如图3所示,猜想EF、AE、CF三线段之间的数量关系并给予证明。请你帮忙解决。

科目 数学   题型 解答题   难度 中等
知识点: 对称式和轮换对称式
登录免费查看答案和解析
相关试题

知识迁移:
时,因为,所以,从而(当时取等号).记函数,由上述结论可知:当时,该函数有最小值为
直接应用:
已知函数与函数, 则当_________时,取得最小值为_________.变形应用:
已知函数与函数,求的最小值,并指出取得该最小值时相应的的值.
实际应用:
已知某汽车的一次运输成本包含以下三个部分:一是固定费用,共元;二是燃油费,每千米为元;三是折旧费,它与路程的平方成正比,比例系数为.设该汽车一次运输的路程为千米,求当为多少时,该汽车平均每千米的运输成本最低?最低是多少元?

猜想与证明:
如图1摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF的中点,连接DM、ME,试猜想DM与ME的关系,并证明你的结论.
拓展与延伸:
(1)若将”猜想与证明“中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为
(2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF的中点,试证明(1)中的结论仍然成立.

如图,在△ABC中,∠B=45°,∠ACB=60°,AB=,点D为BA延长线上的一点,且∠D=∠ACB,⊙O为△ABC的外接圆.

(1)求BC的长;
(2)求⊙O的半径.

如图,在同一平面内,两条平行高速公路l1和l2间有一条“Z”型道路连通,其中AB段与高速公路l1成30°角,长为20km;BC段与AB、CD段都垂直,长为10km,CD段长为30km,求两高速公路间的距离(结果保留根号).

23.如图,在菱形ABCD中,AB=2,,点E是AD边的中点,点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.

(1)求证:四边形AMDN是平行四边形;
(2)填空:①当AM的值为时,四边形AMDN是矩形;
②当AM的值为时,四边形AMDN是菱形.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号