如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标我(4,-1).
(1)把△ABC向上平移5个单位后得到对应的△,画出△
的图形并写出点
的坐标;
(2)以原点O为对称中心,再画出与△关于原点对称的△
,并写出点
的坐标.
(1)已知二次函数的图像经过点(-2,8)和(-1,5),求这个函数的表达式;
(2)已知抛物线的顶点为(-1,-3),与轴交点为(0,-5),求抛物线的解析式.
从2开始,连续的偶数相加,它们和的情况如下表:
加数的个数n |
S |
1 |
2=1×2 |
2 |
2+4=6=2×3 |
3 |
2+4+6=12=3×4 |
4 |
2+4+6+8=20=4×5 |
5 |
2+4+6+8+10=30=5×6 |
(1)若n=8时,则S的值为_____________.
(2)根据表中的规律猜想:用n的式子表示S的公式为:S=2+4+6+8+…+2n=__________________.
(3)根据上题的规律计算2+4+6+8+10+…+98+100的值.
出租车司机小石某天下午营运全是在东西走向的人民大街上进行的,如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:
+15,-3,+14,-11,+10,-12.
(1)将最后一名乘客送达目的地时,小石距下午出发地点的距离是多少千米?
(2)若汽车耗油量为0.3升/千米,这天下午汽车耗油共多少升?
已知互为倒数,
互为相反数,
的绝对值为2,求
的值
(1)若我们把不小于x的最小整数记作〈x〉,如〈2.4〉=3,〈-1.5〉=-1;则〈3〉= ,〈-2.2〉=
(2)在我国,出租车已经普及,杭州城区A、B两种出租车,它们的收费方式有所不同, A种出租车的收费方式是:每千米收费2.5元,不收其它费用。B种出租车的收费方式是:行程不超过3千米收费8元,超过3千米后超出部分每千米再增收2元,同时每趟营运在计价器显示的金额外再向乘客加收1元的燃料附加费.(注:两种出租车在路程上不足1千米按1千米计算,如6.1千米应算成7千米)若某公司员工小王需要乘出租车到离家x千米的公司上班。
①请利用题(1)中的符号,用代数式表示小王分别使用A、B两种出租车的收费情况。
②分别求出x=4.5;x=6;x=6.1时A、B两种出租车的收费情况.
③结合②的答案请说一说小王为了省钱应该如何选择出租车。