如图,上面是一些具体的物体,下面是一些立体图形, 试找出与下面立体图形相类似的实物 (用线连接).
一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三方面为选手打分,各项成绩均按百分制,进入决赛的两名选手的单项成绩如下表所示:
选手 |
演讲内容 |
演讲能力 |
演讲效果 |
甲 |
85 |
95 |
95 |
乙 |
95 |
85 |
95 |
演讲内容 |
演讲能力 |
演讲效果 |
|
甲 |
85 |
95 |
95 |
乙 |
95 |
85 |
95 |
(1)如果认为这三方面的成绩同等重要,从他们的成绩看,谁将胜出?
(2)如果按演讲内容占50%、演讲能力占40%、演讲效果占10%的比例来计算甲、乙的平均成绩,那么谁将胜出?
解下列方程组(本题8分,每题4分):
(1);(2)
.
(本题14分)如图,矩形AOCD的顶点A的坐标是(0,4).动点P从点O出发沿线段OC(不包括端点O,C)以每秒2个单位长度的速度匀速向点C运动,同时动点Q从点C出发沿线段CD(不包括端点C,D)以每秒1个单位长度的速度匀速向点D运动.当其中一点到达终点时,另一点也停止运动.设运动时间为t(秒),当t=2(秒)时,PQ=.解答下列问题:
(1)求点D的坐标;
(2)直接写出t的取值范围;
(3)连接AQ并延长交x轴于点E,把AQ沿AD翻折,点Q落在CD延长线上点F处,连接EF.
①t为何值时,PQ∥AF;
②△AEF的面积S是否随t的变化而变化?若变化,求出S与t的函数关系式;若不变化,求出S的值.
(本题12分)如图,抛物线与x轴交A、B两点(A点在B点左侧),直线
与抛物线交于A、C两点,其中C点的横坐标为2.
(1)求A、B两点的坐标及直线AC的函数表达式;
(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,连接EA,EC,求△ACE面积最大值;
(3)点G是抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,请直接写出所有满足条件的F点坐标;如果不存在,请说明理由.
(本题10分)为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.
(1)若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?
(2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.