(本小题满分12分)
如图,空间四边形ABCD被一平面所截,截面EFGH是平行四边形.
(1)求证:CD∥平面EFGH;
(2)如果AB=CD=a求证:四边形EFGH的周长为定值;
(本小题满分12分)设函数的定义域为集合
,函数
的定义域为集合
.
求:(1)集合;
(2)集合.
(本小题满分14分)已知二次函数(
为常数,
)的一个零点是
.函数
,设函数
.
(1)求的值,当
时,求函数
的单调增区间;
(2)当时,求函数
在区间
上的最小值;
(3)记函数图象为曲线C,设点
是曲线C上不同的两点,点M为线段AB的中点,过点M作
轴的垂线交曲线C于点N.判断曲线C在点N处的切线是否平行于直线AB?并说明理由.
(本小题满分13分)某风景区在一个直径AB为100米的半圆形花园中设计一条观光线路(如图所示).在点A与圆弧上的一点C之间设计为直线段小路,在路的两侧边缘种植绿化带;从点C到点B设计为沿弧BC的弧形小路,在路的一侧边缘种植绿化带.(注:小路及绿化带的宽度忽略不计)
(1)设(弧度),将绿化带总长度表示为
的函数
;
(2)试确定的值,使得绿化带总长度最大.
(本小题满分12分)已知数列满足
,等比数列
为递增数列,且
.
(1)求;
(2)令,不等式
的解集为M,求所有
的和.
(本小题满分12分)如图,在等腰梯形ABCD中,AB//CD,AD=DC=CB=1,∠ABC=60°,四边形ACFE为矩形,平面平面ABCD,CF=1.
(1)求证:平面ACFE;
(2)点M在线段EF上运动,设平面MAB与平面FCB所成二面角的平面角为,试求
的取值范围.