有20筐白菜,以每筐25千克为标准,超过或不足的分别用正、负来表示,记录如下:
与标准质量的差(单位:千克) |
-3 |
-2 |
-1.5 |
0 |
1 |
2.5 |
筐数 |
1 |
4 |
2 |
3 |
2 |
8 |
(1)20筐白菜中,最重的一筐比最轻的一筐要重多少千克?
(2)与标准质量比较,20筐白菜总计超过或不足多少千克?
(3)若白菜每千克售价2.6元,则出售这20筐白菜可卖多少元?
如图1:直线y= kx+4k(k≠0)交x轴于点A,交y轴于点C,点M(2,m)为直线AC上一点,过点M的直线BD交x轴于点B,交y轴于点D.
(1)求的值(用含有k的式子表示.);
(2)若SBOM =3S
DOM,且k为方程(k+7)(k+5)-(k+6)(k+5=
的根,求直线BD的解析式.
(3)如图2,在(2)的条件下,P为线段OD之间的动点(点P不与点O和点D重合),OE
上AP于E,,DF上AP于F,下列两个结论:①值不变;②
值不变,请你判断其中哪一个结论是正确的,并说明理由并求出其值,
如图1,AD∥BC,AB ⊥BC于B,∠DCB=75°,以CD为边的等边△DCE的另一顶点E在线段AB上.
(1)填空:∠ADE=____°;
(2)求证: AB=BC;
(3)如图2所示,若F为线段CD上一点,∠FBC=30°,求的值.
已知A、B两点在数轴上表示的数为a和b,M、N均为数轴上的点,且OA<OB.
(1)若A、B的位置如图l所示,试化简: -
+
+
(2)如图2,若+
=8.9,MN=3,求图中以A、N、O、M、B这5个点为端点的所
有线段长度的和;
(3)如图3,M为AB中点,N为OA中点,且MN=2AB-15,a=-3,若点P为数轴上一点,且PA=AB,试求点P所对应的数为多少?
已知:0为直线AB上的一点,射线OA表示正北方向,射线OC在北偏东m°的方向,射线OE在南偏东n°的方向,射线OF平分∠AOE,且2m+2n=180.
(1)如图1,∠ COE=______°, ∠COF和∠BOE之间的数量关系为________________.
(2)若将∠COE绕点O旋转至图2的位置,射线OF仍然平分∠AOE时,试问(1)中∠COF和∠BOE之间的数量关系是否发生变化?若不发生变化,请你加以证明,若发生变化,请你说明理由;
(3)若将∠COE绕点0旋转至图3位置,射线OF仍平分∠AOE时,则2 ∠COF+∠BOE= _°.
某人型超市元旦假期举行促销活动,规定一次购物不超过100元的不给优惠;超过100元而不超过300元时,按该次购物全额9折优惠;超过300元的其中300元仍按9折优惠,超过部分按8折优惠;小美第第一次购物用了94.5元,第二次购物用了282.8元.
(1)小美第一次购物的原价为多少?
(2)小美第二次购物的原价为多少元?