阅读下面的文字,解答问题.
大家知道是无理数,而无理数是无限不循环小数,因此
的小数部分我们不可能全部地写出来,于是小明用
-1来表示
的小数部分,你同意小明的表示方法吗?
事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.
请解答:已知:10+=x+y,其中x是整数,且0<y<1,求x-y的相反数.
如图,已知AC,EC分别为正方形ABCD和正方形EFCG的对角线,点E在△ABC内,连接BF,∠CAE+∠CBE=90°.
(1)求证:△CAE∽△CBF;
(2)若BE=1,AE=2,求CE的长.
小明和小刚做游戏,用一个不透明袋子,里面装有形状、大小完全相同的2个红球和2个白球,并充分搅匀,让小刚从中摸出一个球不放回,再去摸第二个球,如果两次摸出的球颜色相同小刚赢,反之小明赢.你认为这种游戏是否公平?请你借助树状图或列表的方法,运用概率的知识予以说明.
如图,在宽为20米、长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为多少米?
如图,在▱ABCD中,∠ABD的平分线BE交AD于点E,∠CDB的平分线DF交BC于点F,连接BD.
(1)求证:△ABE≌△CDF;
(2)若AB=DB,求证:四边形DFBE是矩形.
如图,△ABC中,CD是边AB上的高,且.
(1)求证:△ACD∽△CBD;
(2)求∠ACB的大小.